

Polynésie, Bac Gé., 30 Août 2022, sujet n°2

Le candidat traite trois des 4	4 exercices proposés.	

Exercice 1 [Thèmes: probabilités] (7 points)

Parmi les angines, un quart nécessite la prise d'antibiotiques, les autres non.

Afin d'éviter de prescrire inutilement des antibiotiques, les médecins disposent d'un test de diagnostic ayant les caractéristiques suivantes :

- lorsque l'angine nécessite la prise d'antibiotiques, le test est positif dans 90 % des cas;
- lorsque l'angine ne nécessite pas la prise d'antibiotiques, le test est négatif dans 95 % des cas.

Les probabilités demandées dans la suite de l'exercice seront arrondies à 10^{-4} près si nécessaire.

Partie 1

Un patient atteint d'angine et ayant subi le test est choisi au hasard.

On considère les évènements suivants :

- A : « le patient est atteint d'une angine nécessitant la prise d'antibiotiques » ;
- T: « le test est positif »;
- \overline{A} et \overline{T} sont respectivement les évènements contraires de A et T.
- 1. Calculer $P(A \cap T)$. On pourra s'appuyer sur un arbre pondéré.
- 2. Démontrer que P(T) = 0.2625.
- 3. On choisit un patient ayant un test positif. Calculer la probabilité qu'il soit atteint d'une angine nécessitant la prise d'antibiotiques.
- 4. (a) Parmi les évènements suivants, déterminer ceux qui correspondent à un résultat erroné du test : $A \cap T$, $\overline{A} \cap T$, $A \cap \overline{T}$, $\overline{A} \cap \overline{T}$.
 - (b) On définit l'évènement E : « le test fournit un résultat erroné ». Démontrer que p(E) = 0.0625.

Partie 2

On sélectionne au hasard un échantillon de *n* patients qui ont été testés.

On admet que l'on peut assimiler ce choix d'échantillon à un tirage avec remise.

On note X la variable aléatoire qui donne le nombre de patients de cet échantillon ayant un test erroné.

- 1. On suppose que n = 50.
 - (a) Justifier que la variable aléatoire X suit une loi binomiale $\mathcal{B}(n;p)$ de paramètres n=50 et p=0.0625.
 - (b) Calculer P(X = 7).
 - (c) Calculer la probabilité qu'il y ait au moins un patient dans l'échantillon dont le test est erroné.
- 2. Quelle valeur minimale de la taille de l'échantillon faut-il choisir pour que $P(X \ge 10)$ soit supérieure à 0,95?

Exercice 2 [Thèmes: suites, fonctions](7 points)

Soit *k* un nombre réel.

On considère la suite (u_n) définie par son premier terme u_0 et pour tout entier naturel n,

$$u_{n+1} = k u_n (1 - u_n)$$
.

Les deux parties de cet exercice sont indépendantes.

On y étudie deux cas de figure selon les valeurs de k.

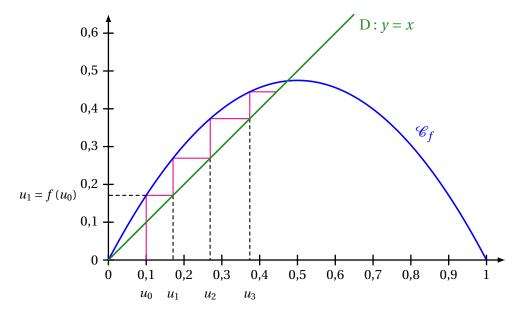
Partie 1

Dans cette partie, k = 1.9 et $u_0 = 0.1$.

On a donc, pour tout entier naturel n, $u_{n+1} = 1.9u_n(1 - u_n)$.

- 1. On considère la fonction f définie sur [0;1] par f(x) = 1,9x(1-x).
 - (a) Étudier les variations de f sur l'intervalle [0;1].
 - (b) En déduire que si $x \in [0;1]$ alors $f(x) \in [0;1]$.
- 2. Ci-dessous sont représentés les premiers termes de la suite (u_n) construits à partir de la courbe \mathscr{C}_f de la fonction f et de la droite D d'équation y = x.

Conjecturer le sens de variation de la suite (u_n) et sa limite éventuelle.



3. (a) En utilisant les résultats de la question 1., démontrer par récurrence que pour tout entier naturel n:

 $0\leqslant u_n\leqslant u_{n+1}\leqslant \frac{1}{2}.$

- (b) En déduire que la suite (u_n) converge.
- (c) Déterminer sa limite.

Partie 2

Dans cette partie, $k = \frac{1}{2}$ et $u_0 = \frac{1}{4}$.

On a donc, pour tout entier naturel n, $u_{n+1} = \frac{1}{2}u_n(1-u_n)$ et $u_0 = \frac{1}{4}$.

On admet que pour tout entier naturel $n: 0 \le u_n \le \left(\frac{1}{2}\right)^n$.

- 1. Démontrer que la suite (u_n) converge et déterminer sa limite.
- 2. On considère la fonction Python algo (p) où p désigne un entier naturel non nul :

```
def algo(p) :
u = 1/4
n = 0
while u > 10**(-p) :
    u = 1/2*u*(1-u)
    n = n+1
return(u)
```

Expliquer pour quoi, pour tout entier naturel non nul p, la boucle while ne tourne pas indéfiniment, ce qui permet à la commande algo(p) de renvoyer une valeur.

Exercice 3 [Thèmes: fonctions] (7 points)

Partie 1

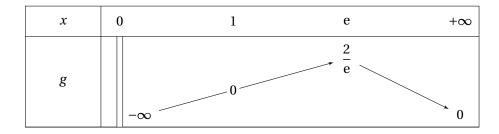
Soit *g* la fonction définie pour tout nombre réel *x* de l'intervalle $]0;+\infty[$ par :

$$g(x) = \frac{2\ln x}{x}.$$

1. On note g' la dérivée de g. Démontrer que pour tout réel x strictement positif :

$$g'(x) = \frac{2 - 2\ln x}{x^2}.$$

2. On dispose de ce tableau de variations de la fonction g sur l'intervalle $]0; +\infty[$:



Justifier les informations suivantes lues dans ce tableau :

- (a) la valeur $\frac{2}{e}$;
- (b) les variations de la fonction *g* sur son ensemble de définition;
- (c) les limites de la fonction g aux bornes de son ensemble de définition.
- 3. En déduire le tableau de signes de la fonction g sur l'intervalle $]0; +\infty[$.

Partie 2

Soit f la fonction définie sur l'intervalle $]0; +\infty[$ par

$$f(x) = [\ln(x)]^2.$$

Dans cette partie, chaque étude est effectuée sur l'intervalle $]0; +\infty[$.

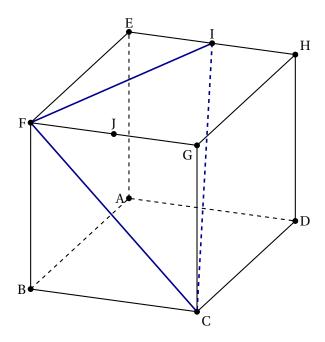
- 1. Démontrer que sur l'intervalle $]0; +\infty[$, la fonction f est une primitive de la fonction g.
- 2. À l'aide de la **partie 1**, étudier :
 - (a) la convexité de la fonction *f* ;
 - (b) les variations de la fonction f.
- 3. (a) Donner une équation de la tangente à la courbe représentative de la fonction f au point d'abscisse e.
 - (b) En déduire que, pour tout réel *x* dans]0;e]:

$$[\ln(x)]^2 \geqslant \frac{2}{e}x - 1.$$

On considère le cube ABCDEFGH.

On note I le milieu du segment [EH] et on considère le triangle CFI.

L'espace est muni du repère orthonormé $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ et on admet que le point I a pour coordonnées (0; dfrac12; 1) dans ce repère.



- 1. (a) Donner sans justifier les coordonnées des points C, F et G.
 - (b) Démontrer que le vecteur \overrightarrow{n} $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ est normal au plan (CFI).
 - (c) Vérifier qu'une équation cartésienne du plan (CFI) est : x + 2y + 2z 3 = 0.
- 2. On note *d* la droite passant par G et orthogonale au plan (CFI).
 - (a) Déterminer une représentation paramétrique de la droite d.
 - (b) Démontrer que le point $K\left(\frac{7}{9}; \frac{5}{9}; \frac{5}{9}\right)$ est le projeté orthogonal du point G sur le plan (CFI).
 - (c) Déduire des questions précédentes que la distance du point G au plan (CFI) est égale à $\frac{2}{3}$.
- 3. On considère la pyramide GCFI.

On rappelle que le volume V d'une pyramide est donné par la formule

$$\mathcal{V} = \frac{1}{3} \times b \times h,$$

où b est l'aire d'une base et h la hauteur associée à cette base.

- (a) Démontrer que le volume de la pyramide GCFI est égal à $\frac{1}{6}$, exprimé en unité de volume.
- (b) En déduire l'aire du triangle CFI, en unité d'aire.